接口和属性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {
//双链表头节点
transient Entry<K,V> head;
//双链表尾节点
transient Entry<K,V> tail;
//为true则表示按照基于访问的顺序来排列,意思就是最近使用的entry,放在链表的最末尾,
//为false表示按照基于插入的顺序来排列,后插入的放在链表末尾,不指定默认为false
final boolean accessOrder;

static class Entry<K,V> extends HashMap.Node<K,V> {
//双链表前继、后继节点
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
}

构造方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
//指定accessOrder的值
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

//按照默认值初始化
public LinkedHashMap() {
super();
accessOrder = false;
}

public LinkedHashMap(Map<? extends K, ? extends V> m) {
super();
accessOrder = false;
putMapEntries(m, false);
}

//指定初始化时的容量
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}

//指定初始化时的容量,和扩容的加载因子
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}

插入

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// HashMap 中实现
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

// HashMap 中实现
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) {...}
// 通过节点 hash 定位节点所在的桶位置,并检测桶中是否包含节点引用
if ((p = tab[i = (n - 1) & hash]) == null) {...}
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode) {...}
else {
// 遍历链表,并统计链表长度
for (int binCount = 0; ; ++binCount) {
// 未在单链表中找到要插入的节点,将新节点接在单链表的后面
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) {...}
break;
}
// 插入的节点已经存在于单链表中
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null) {...}
afterNodeAccess(e); // 回调方法,后续说明
return oldValue;
}
}
++modCount;
if (++size > threshold) {...}
afterNodeInsertion(evict); // 回调方法,后续说明
return null;
}

LinkedHashMap 重写了 newNode 和回调方法 afterNodeAccess、afterNodeInsertion

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
//在构建新节点时,构建的是LinkedHashMap.Entry 不再是Node.
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
Entry<K,V> p = new Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}

//将新增的节点,连接在链表的尾部
private void linkNodeLast(Entry<K,V> p) {
Entry<K,V> last = tail;
tail = p;
//若集合是空的
if (last == null)
head = p;
//新节点插到链表顶部
else {
p.before = last;
last.after = p;
}
}

//仅仅在accessOrder为true时进行,把当前访问的元素移动到链表尾部
void afterNodeAccess(Node<K,V> e) { // move node to last
Entry<K,V> last;
//当accessOrder的值为true,且e不是尾节点
if (accessOrder && (last = tail) != e) {
//将e赋值临时节点p, b是e的前一个节点, a是e的后一个节点
Entry<K,V> p = (Entry<K,V>)e, b = p.before, a = p.after;
//设置p的后一个节点为null,因为执行后p在链表末尾,after肯定为null
p.after = null;
//p的前一个节点不存在,p就是头节点,那么把p放到最后,a就是头节点
if (b == null)
head = a;
//p的前一个节点存在,p放到最后,b的后一个节点指向a
else
b.after = a;
//p的后一个节点存在,p放到最后,a的前一个节点指向a
if (a != null)
a.before = b;
//p的后一个节点不存在
else
last = b;
//只有一个p节点
if (last == null)
head = p;
//last不为空,把p放到last节点后面
else {
p.before = last;
last.after = p;
}
//p为尾节点
tail = p;
++modCount;
}
}

//回调函数,新节点插入之后回调,根据evict和accessOrder判断是否需要删除最老/早插入的节点。
//如果实现LruCache会用到这个方法。
//removeEldestEntry制定删除规则,JDK8中默认返回false
void afterNodeInsertion(boolean evict) { // possibly remove eldest
Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}

protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

LinkedHashMap 如何实现 LRU 缓存?

将 accessOrder 设置为 true 并重写 removeEldestEntry 方法当链表大小超过容量时返回 true,使得每次访问一个元素时,该元素会被移动到链表的末尾。一旦插入操作让 removeEldestEntry 返回 true 时,视为缓存已满,LinkedHashMap 就会将链表首元素移除,由此我们就能实现一个 LRU 缓存。

删除

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// HashMap 中实现
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
}

// HashMap 中实现
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode) {...}
else {
// 遍历单链表,寻找要删除的节点,并赋值给 node 变量
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode) {...}
// 将要删除的节点从单链表中移除
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node); // 调用删除回调方法进行后续操作
return node;
}
}
return null;
}

// LinkedHashMap 中覆写
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
// 将 p 节点的前驱后后继引用置空
p.before = p.after = null;
// b 为 null,表明 p 是头节点
if (b == null)
head = a;
else
b.after = a;
// a 为 null,表明 p 是尾节点
if (a == null)
tail = b;
else
a.before = b;
}
  1. 根据 hash 定位到桶位置
  2. 遍历链表或调用红黑树相关的删除方法
  3. 从 LinkedHashMap 维护的双链表中移除要删除的节点

查找

默认情况下,LinkedHashMap 是按插入顺序维护链表,不过我们可以在初始化 LinkedHashMap,指定 accessOrder 参数为 true,即可让它按访问顺序维护链表,当我们调用 get/getOrDefault/replace 等方法时,只要将这些方法访问的节点移动到链表的尾部即可(其前驱和后继也会跟着更新)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// LinkedHashMap 中覆写
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
// 如果 accessOrder 为 true,则调用 afterNodeAccess 将被访问节点移动到链表最后
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return defaultValue;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
  1. 访问键值为 3 的节点前

  1. 访问后,键值为 3 的节点将会被移动到双向链表的最后位置,其前驱和后继也会跟着更新